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The quantum harmonic oscillator with time-dependent mass and frequency is 
analyzed by using the canonical transformation method. The varying mass and 
frequency of the system are reduced to constant mass and frequency, and the 
corresponding eigenvalues and eigenvectors are derived. The exact time- 
dependent coherent state of the harmonic oscillator is constructed and shown to 
be equivalent to the squeezed state. Damped harmonic oscillators with different 
frictions and forced time-dependent harmonic oscillators are also discussed. 

1. I N T R O D U C T I O N  

The study of the time-dependent harmonic oscillator with time-depen- 
dent frequency (Hartley and Ray, 1982a,b; Pedrosa, 1987a,b), or with time- 
dependent mass (Leach, 1983; Colegrave and Abdalla, 1981a,b, 1982, 
1983a,b), or both simultaneously (Abdalla, 1986; Jannussis and Bartzis, 
1988a,b; Lo, 1990, 1992; Baseia and De Brito, 1992; Dantas et al., 1992) 
has attracted considerable interest in different areas of physics, such as plasma 
physics, gravitation, and quantum optics. Colegrave and Abdalla (1983a, b) 
studied the harmonic oscillator with constant frequency and time-dependent 
mass in order to describe the electromagnetic field in a Fabry-Perot  cavity. 
Hartley and Ray (1982a) and Pedrosa (1987a) treated the time-dependent 
harmonic oscillator with varying frequency and constant mass for studying 
the coherent state. Dantas et  al. (1992) solved the harmonic oscillator under 
the action of a particular time-dependent perturbative potential. Lo (1992) 
studied the time evolution of  a charged oscillator with time-dependent mass 
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and frequency in a time-dependent electromagnetic field and obtained the 
eigenfunctions and eigenstates at any time t. Baseia and De Brito (1992) 
examined the generation of squeezing for a harmonic oscillator when a sudden 
change of mass takes place. 

Many methods have been presented to solve the problems of time- 
dependent harmonic oscillators, but in essence there are two main approaches: 
the first, based on Lewis and Riesenfeld (1969), uses time-dependent invari- 
ants, and the second uses time-dependent canonical transformations (Pedrosa, 
1987b). In this paper the canonical transformation method is used to solve 
the harmonic oscillator with time-dependent mass and frequency described 
by the Hamiltonian 

I?t = 2m(t-----) + m(t)~ (1.1) 

This Hamiltonian can be canonically transformed to a new Hamiltonian with 
time-independent mass and frequency which has time-dependent eigenvalues 
and eigenvectors. 

The canonical transformation method will be introduced in Section 2. 
The cases for k = 0 and k 4:0 are treated in Sections 3 and 4, respectively. 
When k = 0, the exact solutions of position and momentum operators are 
obtained, and the time-dependent annihilation and creation operators are 
shown to be equivalent to the squeezed operators. When k v~ 0, the time- 
dependent state is constructed and it is equivalent to the squeezed state. 
Damped harmonic oscillators with different frictions and forced time-depen- 
dent harmonic oscillators are discussed in Sections 5 and 6. Finally, a reason- 
able physical interpretation is given in Section 7. 

2. LINEAR CANONICAL TRANSFORMATION 

In the Heisenberg picture, the equations of motion for the Hamiltonian 
(1.1) are 

d ~ _ l  /~ 
dt ih [0'/-it] - (2.1) m(t) 

d p _  l 
dt ih [13' [t] = -m(t)~oz(t)fl (2.2) 

The Hamiltonian (1.1) can be canonically transformed by using the transfor- 
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marion equations P = OF/Oq and Q = OF/Op. We have 

1 
Q(t) = A-~ c~ (2.3) 

/3(0 = A(t) f i  + r 4 (2.4) 

We introduce the generating function 

F( 4,/3, t) = ~ (4/3 + /3c~) - ~(t__.._~) 02 (2.5) 
2A(t) 2A(t) 

where A( t )  and qb(t) are any functions of time. From equations (2.1)-(2.4) 
we have 

dO. _ [m( t )a  '( t)  + ~(t)] 13 
d---t - A2( t )m( t )  Cl + A2(t )m(t~ (2.6) 

dP l 
- [ m ( t ) A ' ( t )  + @( t ) J f i -  [m( t )A( t )o f l ( t )  - qb'(t)]O (2.7) 

dt m(t) 

Here the prime denotes d/dt .  In order to solve the problem and to simplify 
it, we let 

m ( t ) A ' ( t )  + ~b(t) = 0 (2.8) 

k 2 
A(t)o~Z(t)m(t)  - rip'(t) - - -  (2.9) m(t)A3(t) 

with the initial condition 

A(0) = 0, alp(0) = 0 

From equations (2.6) and (2.7) we have 

(2.10) 

dO_ k 
dt  m(t )A2( t )  (2.11) 

dP ~20_ 
dt - m( t )A2( t )  (2.12) 

From equations (2.8) and (2.9), we get the auxiliary equation 

k 2 
a " ( t )  + ~( t )A  '(t)  + to2(t)a(t)  - m2(t )A3(t )  

with the initial condition 

(2.13) 

A(0)  = 1, A ' ( 0 )  = 0 
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where 

d 
~(t) = ~ In m(t) 

The function dO(t) can be expressed as 

fo[ do(t) = - m ( t ) A  '(t) = m(t ' )A(t ' )mz(t  ') 

Sheng et  al. 

m(t,)A3(t ,  ) dt '  (2.14) 

Note that A(t), do(t), and k are all real, and let k > 0. As a result, the time- 
dependent system (1.1) becomes a new system with the transformed Hamilto- 
nian 

H - m(t)AZ(t---~) + (2.15) 

From equations (2.3), (2.4), and (2.8) we have 

0(t) - 0 (2.16) 
a(t) 

P(t) = a(t),O - m(t)A '(t)~l (2.17) 

In the SchrOdinger picture, we have 

Ht~(O_, t) = ih Ot~/Ot (2.18) 

or equivalently 

where 

~lt~(O, t) = m(t)A2(t)ih aO/at (2.19) 

~1(0_) k2 k20"2 
= - -  + - -  (2.20) 

2 2 

The solution of equation (2.18) or equation (2.19) can be written as 

,(0_, t) = ~ c.o.(O_, t) 
n 

[ ] --- ~n Cn exp - i ~ ( Q ) / h  m(t , )A2(t , )  dt' don(O) (2.21) 
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where qbn(Q) is the solution of the eigenvalue equation 

with 
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(2.22) 

3. THE CASE OF k = 0 

For the harmonic oscillator with time-dependent mass and frequency, 
we can obtain the transformed equations of motion from equations (2.11) 
and (2.12), 

dO_/dt = P/m(t )A2( t )  (3.1) 

d P / d t  = 0 (3.2) 

From equations (3.1) and (3.2), we have 

['(t) = p, O_(t) = P dt '  + [3 (3.3) 
m(t ')A2(t ') 

where p and 13 are constants. From equations (2.16) and (2.17), we have 

Io' O(t) = CloA(t) + fioA(t) A2(t-~m(t ) dt  (3.4) 

Io' ] p(t)  = 1 + m( t )A ' (O A2(t)m(t ) dt  Po + m(t)a'(t)~o (3.5) 

where 

?1o = O(t = 0) = 0(0) = 13, P0 = p( t  = O) = P(O) = p 

Construct the annihilation and creation operators 

~( t )_  1 { fi(t) } 
(2h)l/2 [m(t)to(t)]l/2~(t) + i [m(t)to(t)]l/2 (3.6) 

~+(t) - 1 { p(t)  
(2h)1/2 [m(t)to(t)]m4(t) - i [m(t)~)]l/2j (3.7) 
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which satisfy the commutation relation [& c~ +] = 1. From equations (3.4)- 
(3.7), we have 

fi(t) = p~(t)6(O) + 7(/)d+(0) (3.8) 

~+(t) = p~*(t)h+(O) + ",/*(t)&(O) (3.9) 

with 

where 

1 [ m,.% ] 
A(t) + ~ Lm~t-G(t)J 

i {A , . . [  m(t) ]  tqm  ol 

p,(t) = ~ \ [ k  moo J 

1/2 1/2 

+ A (t)M(t) - ~  . + 

-A(t)M(t)[mco(t)m(t)cooltn}) (3.10) 

1/2 
1 (~[m(t)o~____(t)] A ( t ) -  1 [ mo~o ]1/2 

3'(t) = ~ \[.L mtoo J A-~ [_m(t-~(t)j 

, mtoom(t) + i{A"" [ m(t) -] l/2 

too = to(O), m = m(O), M(t) = m(t,)A2(t, ) dt' 

The functions IX(t) and 7(0 satisfy the relation 

IIx[ 2 -  I',/[ z =  1 (3.12) 

Therefore, the operators (3.6) and (3.7) are the squeezed operators. 
According to Yuan (1976), the uncertainty in/~ and 0 for the squeezed state 
is given by 

(Aq)(Ap) = (h/2)lp~ - 71"11x + 71 (3.13) 

From the above argument we see that if the initial state is a coherent state, 
the corresponding time-evolved state is a squeezed state. 
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4. THE CASE OF k =~ 0 

From equation (2.20) we have 

HI = gt+(t)gt(t) + hk 

where 
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(4.1) 

[ 11 /)0 = 6+(0)ti(0) + ~ ho3o (4.8) 

The annihilation and creation operators ~i(t) and ~i+(t) satisfy the commuta- 
tion relation 

[fi(t), ~+(t)] = 1 (4.4) 

Thus the eigenfunction of HI is the number state, i.e., 

qb(~)) = In) (4.5) 

According to the procedure in Section 2, the time-evolved number state of 
the time-dependent system is 

[( In, t) = exp - i  n + k m(t,-~z(t,)Jln) (4.6) 

and the general solution is 

[qJ(t)) = ~ Chin, t) 
n 

= ~, C, exp - i  n + k m(t,)AZ(t,)jln) (4.7) 

When t = 0, the Hamiltonian (1.1) can be written as 

dr(t)- 1 [(kO)~/2+i P ] (2h)l/2 ~ (4.2) 

d~+(t) - 1 [(kO_)m_i p ] (2h) m ~7~ (4.3) 
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where 

~ ( 0 ) -  (2h)l/zl (6Ool/20 _b i p~) 

~+(0) - 1 (coI/20 - } p ) 
(2~) 1/2 ~-~ 

The coherent state at t = 0 is 

( [ _ ~ )  a" 
la, 0) = exp - ~ (n!)l,------ 5 In) 

Then we obtain the evolved coherent state 

( [al.~) an 
I a, t) -- exp - ~ ~ In, t) 

and equations (4.2) and (4.3) can be written as 

a(O = tx(0ff(0) + "/(t)a+(O) 

a+(0 = ~*(t)a+(0) + ~*(t)a(0) 

with 
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(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

[ ] 1 , 2 [  ]1,2 
k 

Ix(t) = 2 r + A (t) m (t)kOJ (1) 

+ idP(t) [k~o(t)m(t)] 112 (4.15) 

"l(t) = -~ m(t)-m(t) - A(t) m( (t) 

+ ida(t) [km(t)m(t)]l/2 (4.16) 

The functions Ix(t) and ~(t) satisfy the relation 

JILl 2 -I~/I 2 = 1 (4.17) 

Therefore, the evolved coherent state is equivalent to the squeezed state. 
The uncertainty relation for the squeezed state is 
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( A q ) ( A p ) =  - �9 1 + k2 _] >-~  

These results indicate that the squeezed state can be generated from a coherent 
state by varying the mass and frequency of the oscillator. 

. D A M P E D  H A R M O N I C  O S C I L L A T O R  

We consider the case of damped harmonic oscillator, i.e., 

k = 0  m(t) = m'exp(W), ~o(t) = co = const, 

Then the auxiliary equation is 

A"(t) + ~/A'(t) + r = 0 (5.1) 

with the initial condition 

A(0) = 1, A'(0) = 0 

The solution of equation (5.1) is 

A(t)  = exp(-~t /2)  cosh ~ t  + ~ sinh l~t (5.2) 

For strong friction a 2 = "y2/4 - ~2 > 0, we have 

( l / a )  sinh a t  
M ( t ) =  

m[cosh l i t  + (~//2f~) sinh f/t] 

0(0 = e -~'/2 cosh a t  + ~-~ sinh a t  00 + ~-~ sinh a t  (5.3) 

[ (  ~ 0  mt~176 sinh a t ]  (5.4) t5(0 = e w/2 cosh l~t - 2 ~  sinh f~t 

Therefore the functions Ix(t) and ~/(t) have the form 

~/(t) = ~-~ sinh l~t 
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The uncertainty in 0 and/0 is given by 

(Aq}(Ap) = ~ 1 + ~ sinh 4 a t  ~ ~ (5.5) 

For weak friction 1~ 2 = to 2 - ~z/4 > 0, we have 

tx(t) = cos f i t - i ( ~ )  sin l i t  

~/(t) = 2-~ sin f i t  

The uncertainty in ~ and p is given by 

h (  "/2602 )1/2 h 
(Aq}(Ap) = -~ 1 + ~ sin 4 l) t  --> ~ (5.6) 

It takes the minimum value {Aq)(Ap} = hi2  at f i t  = n'rr (n = 0, 1, 2 . . . .  ). 
For the critical friction f~ --+ 0, we have 

bt(t) = 1 - ioat 

y( t )  = oJt 

The uncertainty relation gives 

h 4toZt2) l/2 h (Aq}(Ap) = ~ (1 + -> - 
2 

The above result satisfies the property of the coherent state, and it is consistent 
with that of Jannussis and Bartzis (1988a,b). 

6. FORCED TIME-DEPENDENT HARMONIC OSCILLATOR 

We consider the forced harmonic oscillator with time-dependent mass 
and frequency, and the Hamiltonian is 

p2 1 m(t)to2(t)C12 + f(t)C1 (6.1) f i r  = 2m(t'----~) + 

where f( t)  is any force function of t. To simplify the treatment, we let f(0) 
= 0. 

In the Heisenberg picture, the equations of motion are 
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d _l p 
dt ih [?1, I?IF] - m(t) 

d p _  l 
dt ih [fi' ElF] = -m(t)~oZ(t)4 - f ( t )  
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(6.2) 

(6.3) 

Following the procedure in Section 2, we make the canonical transformation 

0 - CI + c(t) (6.4) 
A(t) 

P = A(O(p + b(t)) - m(t)A'(t)(O + c(t)) (6.5) 

where b(t) and c(t) are any functions of t, and A(t) is the function satisfying 
the auxiliary equation (2.13). 

Provided that b(t) and c(t) satisfy the relations 

b(t) = m(t)c'( t)  (6.6) 

b'( t)  + m(t)to2(t)c(t) = f ( t )  (6.7) 

with the initial condition 

b(0) = 0, c(0) = 0 

we obtain a new Hamiltonian of the form 

He - m(t)AZ(t ) + (6.8) 

where 

Q_ - ~ + c(t) 

A(t) 

16 = A(t)[p + m(t)c'(t)] - m(t)A'(t)C 1 

The new equations of motion are 

dO_ P 
dt m(t)A2(t) 

dP k O_ 
dt m(t)AZ(t) 

From Eqs. (6.6) and (6.7), we get another auxiliary equation 

c*(t) + ~l(t)c'(t) + ~o2(t)c(t) - f ( t )  
m(t) 

(6.9) 

(6.1 O) 

(6.11) 

(6.12) 

(6.13) 
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with the initial condition 

where 

c ' ( O )  = c(O) = o 

d 
"y(t) = ~ [In m(t)] 
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The function b(t) can be expressed as 

f0 b(t) = m(Oc'(t) = [f(t') - m(t')to2(t')c(t')] dt' (6.14) 

According to the procedure in Section 3, we can obtain in the case of 
k = 0  

O(t) = OoA(t) + ~oA(t) A2(t,~m(t, )dt '  - c(t) (6.15) 

1 + m(t)A'(t) dt' Po ~(t) = A(t) A2(t')m(t ') 

+ m(t)A'(t)glo - m(t)c'(t) (6.16) 

The annihilation and creation operators are also the squeezed operators, i.e., 

a(t) = l~(t)d(0) + "y(t)•+(0) 

(2h)l/2 [m(t)to(t)]ll2c(t) + i [m(0]l/------~2[to(t)]u z c'(O (6.17) 

~+(t) = ~*(t)&*(O) + ~*(t)fi 

1 { c'(t)} (6.18) (2h)l/2 [m(t)to(t)]ll2c(t) - i [m(/)]l/2 
[to(t)] t/2 

where p.(t) and -r satisfy (3.10)-(3.12). The uncertainty in/~ and ~ gives 

h 
(Aq)(Ap) = ~ [p~ + "r - "y[ (6.19) 

According to the procedure in Section 6, we obtain in the case of k 4= 0 

(-'4) [a, t) = exp ~ ~ In, t) 

(_1~2) n ~ an X I-- i(  n + l ~ k  JO A2(tdt')m(t')] = exp ~ e p In) (6.20) 
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This evolved coherent state is equivalent to that of  the time-dependent har- 
monic oscillator. We can also prove that the evolved coherent state is just a 
squeezed state. 

7. C O N C L U S I O N  

The time-dependent harmonic and forced time-dependent harmonic 
oscillators have been analyzed by the time-dependent linear canonical trans- 
formation method. The exact eigenvalues and eigenvectors of  the harmonic 
oscillator with time-dependent mass and frequency were derived. 

Leach (1977a, b, 1978; Gunther and Leach, 1977) used the linear canoni- 
cal transformation to give a physical interpretation to the problem of finding 
an invariant and to solve some special t ime-dependent systems. But Leach 
only discussed the case of  k = 1. In this paper, the case of  k = 0 was also 
considered. The physical interpretation of this case is that the canonical 
coordinates (p, q) are transformed into new ones (P, Q) where the momentum 
operator P is invariant. By this transformation, the exact solutions of  position 
and momentum operators can be obtained. 

When k v~ 0, the exact coherent state is constructed by an effective 
method, which is different from that in Hartley and Ray (1982a). Our result 
is in good agreement with that of  Dantas et al. (1992). The case of k = 0 
has also been discussed. It was shown that the t ime-evolved state will be 
a squeezed state if the wave function of the time-dependent oscillator at t = 
0 is a coherent state. Hence the squeezed state can be generated by externally 
changing the mass and frequency of the oscillator. 

Finally, the damped harmonic oscillators with strong, weak, and critical 
frictions have been discussed. The result is consistent with that of  Jannussis 
and Bartzis (1988a). 
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